

Effects of Copper and Cadmium on Growth, Photosynthesis, and Pigment Content in *Gracilaria lemaneiformis*

J. R. Xia, Y. J. Li, J. Lu, B. Chen

Marine Biology Institute, Shantou University, Shantou, Guangdong 515063, People's Republic of China

Received: 20 February 2004/Accepted: 10 September 2004

In coastal areas, macroalgae are important primary producers and an integral part of the ecosystem. Coastal waters are most affected by anthropogenic contaminants, and as seaweeds border a high proportion of the world's coastline their responses to contaminants are of obvious importance. Many field studies have suggested that metal concentration in seaweeds respond rather faithfully to gradients of metal concentration in their environments (Haritonidis and Malea 1995; Say et al. 1990), therefore some marine macroalgae have been used as a biomonitors of metal contamination in many coastal water (Villares et al. 2001; Haritonidis and Malea 1999; Ho 1990). Furthermore, they can also be used as a biosorbent material for removing metals from solution and their potential application have found in technological processes, in particular, for industrial and mining waste treatments (Volesky and Holan 1995). Heavy metal pollutants in higher plants and microalgae have been shown to depress photosynthesis (Ralph and Burchett 1998), disrupt electron transport in photosystem II (Shioi et al. 1978; Yruela et al, 2000), reduce pigments concentration (Saygideger, 2000), affect the permeability of the plasma membrane (De Filippis 1979). There is relatively little information on the physiological response of seaweed species to elevated heavy metal (Gledhill et al. 1997; Brown and Newman 2003). Up on exposure to elevated copper concentrations, growth of Laminaria hyperborea and Fucus vesiculosus has been assessed in the laboratory and appeared to differ in their tolerances (Munda and Hudnik 1986; Hopkin and Kain 1978; Gledhill et al. 1997).

Gracilaria lemaneiformis, an important macroalgae used for sea-vegetable foods and forage, has been used as the biofilters of nutrients because of its high efficiencies in removing inorganic nitrogenous compounds (Fei 1999). It is able to absorb and metabolize different forms of inorganic nutrient, mainly N and P. The macronutrients input into the coastal environments is often accompanied by heavy metal pollutants. However, physiological change of G. lemaneiformis in response to the increasing heavy metal remains essentially unknown.

In the present study, *G. lemaneiformis* was cultured in different heavy metal (Cu and Cd) concentration to be assessed the effects of heavy metal on its growth, photosynthesis and pigment content.

MATERIALS AND METHODS

The red alga Gracilaria lemaneiformis (Rhodophyte) was collected from Nanao Island, Shantou, China (23°20' N, 116°55' E). Upon arrival in the laboratory, the seaweed was thoroughly cleaned and then maintained in the aerated seawater (31 in salinity) enriched with f/2 medium (Mclachlan, 1973) without trace metals and EDTA in the aquarium at 50 µmol m⁻² s⁻¹(LD cycle 12:12h) and 20 °C. After acclimation for 4 days, healthy samples (0.4-0.8g fresh weight) were cultured in 500ml medium as described above. Heavy metal were added and the nominal concentrations were 0, 2, 5, 10µM for Cu, and 0, 50, 100, 200µM for Cd. All experiments were carried out with three replications. After 96hr exposure to copper and cadmium, the seaweed materials were harvested. Chlorophyll a (Chl a), carotenoids (Car), phycoerythrin (R-PE) and phycocyanin (R-PC) were determined according to Evans (1988). Photosynthetic oxygen evolution was measured by using an oxygen monitor (YSI 5300, U.S.A) with a Clark-type oxygen electrode. The temperature was maintained at 20 °C and illumination was provided by a halogen lamp at PAR of 400 µmolm⁻²s⁻¹. Biomass (fresh weight) was determined by weighing the alga after blotting by absorbent paper. The relative growth rate (R) was calculated by using the following formula:

 $R = (\ln FW_t - \ln FW_0)/t$

where FW_t is the fresh weight of samples at t time, FW_o is the original fresh weight of samples. The results were analyzed according to one-way ANOVA followed by Least Significance Difference test. The confidence level was set at 5%.

RESULTS AND DISCUSSION

G. lemaneiformis showed significantly limited growth when exposed to Cd concentrations from 100 to 200µM for 96hr (P<0.05). The relative growth rate in 50, 100 and 200µM Cd-treatments decreased by 7.0%, 46.3% and 89.4% compared to the control treatment (Fig. 1). Fig. 2 showed that Cu exposure also induced marked growth depression; the relative growth rate after 96hr Cu exposure from 2 to 10µM declined by 35.1%, 71.9% and 71.2% in contrast to the control treatment (P<0.05). The reduction in growth could be a consequence of heavy metal interference with a number of metabolic processes associated with normal development (Van Assche and Clijsters 1990; Alia and Saradhi 1991). The present study demonstrated that Cu appeared to be more toxic to G. lemaneiformis than Cd, as earlier reported by Lyngby and Brix (1984) and Malea (1994). Copper is an essential element for metabolic processes and actively taken up by the plants, however, when exposed to increasing concentration, uptake may exceed metabolic requirements and resulted in a toxic impact. On the other hand, Cd is a non-essential element for growth, the plant may actively exclude or sequester such metal to minimize the metal toxic impact. Similarly, It had been reported that Halophila stipulacea had a lower uptake concentration of metals which do not participated in physiological process (Malea 1994). In addition, the

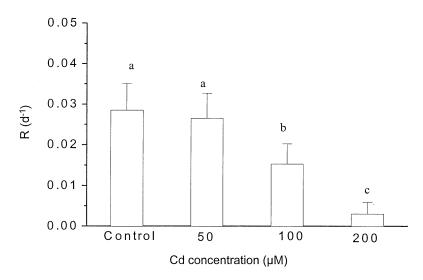


Figure 1. Effects of Cd concentration on growth of G lemaneiformis. Values are means \pm SD (n=3). Those with different superscript are significantly different (P<0.05).

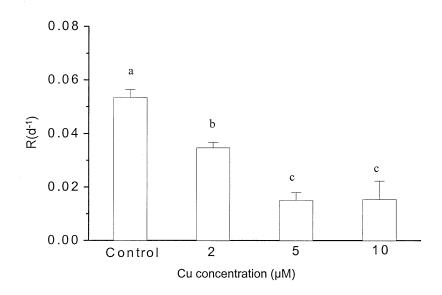


Figure 2. Effects of Cu concentration on growth of *G. lemaneiformis*. Values are means \pm SD (n=3). Those with different superscript are significantly different (P<0.05).

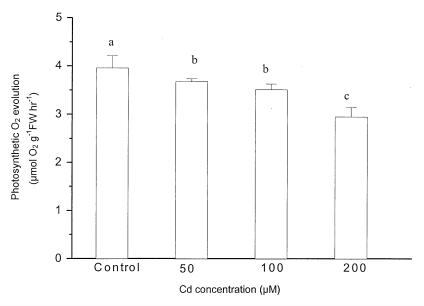


Figure 3. Effects of Cd concentration on photosynthetic O_2 evolution in *G. lemaneiformis*. Values are means \pm SD (n=3). Those with different superscript are significantly different (P<0.05).

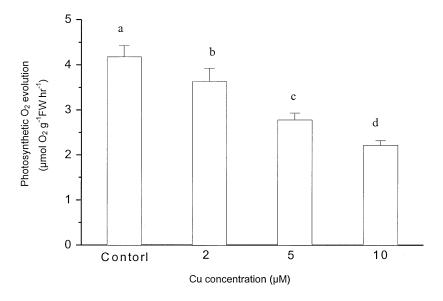


Figure 4. Effects of Cu concentration on photosynthetic O_2 evolution in *G. lemaneiformis*. Values are means \pm SD (n=3). Those with different superscript are significantly different (P<0.05).

Table 1. Pigment content (mg/g FW) in *G. lemaneiformis* when exposed to elevated Cd concentrations for 96hr. Data are means ± SD (n=3).

	Chl a	Car	R-PC	R-PE
Control	0.15 ± 0.02^{a}	0.04 ± 0.01^{a}	0.15 ± 0.03^{a}	1.04 ± 0.02^{a}
50μΜ	0.13 ± 0.02^{a}	0.03 ± 0.01^{ab}	0.08 ± 0.02^{b}	1.12 ± 0.19^{a}
$100 \mu M$	0.13 ± 0.01^{a}	0.04 ± 0.00^{a}	0.02 ± 0.01^{c}	0.68 ± 0.22^{b}
$200 \mu M$	0.09 ± 0.01^{b}	0.02 ± 0.00^{b}	0.02 ± 0.01^{c}	0.49 ± 0.08^{b}

Those with different superscript are significantly different (P<0.05).

Table 2. Pigment content (mg/g FW) in *G. lemaneiformis* when exposed to elevated Cu concentrations for 96hr. Data are means \pm SD (n=3).

	Chl a	Car	R-PC	R-PE
Control	0.26 ± 0.02^a	0.06 ± 0.01^{a}	0.15 ± 0.01^{a}	1.30 ± 0.11^{a}
$2\mu M$	0.26 ± 0.05^{a}	0.07 ± 0.01^{a}	0.12 ± 0.03^{ab}	1.24 ± 0.25^{a}
5μΜ	0.27 ± 0.03^{a}	0.06 ± 0.01^{a}	0.11 ± 0.03^{ab}	1.31 ± 0.11^{a}
$10\mu M$	0.24 ± 0.02^{a}	0.06 ± 0.01^{a}	0.08 ± 0.02^{b}	0.84 ± 0.09^{b}

Those with different superscript are significantly different (P<0.05).

lower solubilities of Cd may be lead to greater chelation and adsorption on particles in the culture medium. This could also help to explain the greater toxicity in Cu treatment than in Cd treatment.

Cd treatment from 50 to 200 µM had a significant effect on photosynthesis of G lemaneiformis samples relative to the control (P<0.05), and exposure to Cd concentrations from 50 to 200 µM resulted in the reduction in photosynthetic O₂ evolution by 7.0%, 11.1% and 25.2%, respectively, with respect to the control response(Fig.3). The photosynthetic O₂ evolution with the elevated Cu concentration from 2 to 10 µM had an apparent decline (P<0.05), reaching up to 86.9%, 66.5% and 52.9% of that of the control treatment (Fig. 4). It was generally accepted that high heavy metal concentration led to photosynthetic depression (Greger and Ögren 1991; Yruela et al. 2000). Cu had a regulatory role in photosynthetic electron transport as part of polypeptides involved in electron transport, or as a stabilizer of lipid environment close to electron carriers of PSII complex (Maksymiec 1997; Barón et al. 1995). Pätsikka et al (2001) determined that the excess Cu damaged the proteins of the oxygen-evolving complex at the donor side of PSII, causing rapid loss of PSII activity in the light. Cd damaged the photosynthetic apparatus, in particular the light harvesting complex II (Krupa 1988), the photosystem II and I (Siedlecka and Baszynsky 1993; Siedlecka and Krupa 1996).

Effects of Cd and Cu on pigment content of G lemaneiformis after 96hr exposure

are shown in Tables.1 and 2, and a significant decline in Chl a and Car content was observed when *G. lemaneiformis* was exposed to 200 μ M Cd concentration (P<0.05). In constrast, Chl a and Car content remained relatively stable with the increasing Cu concentration (2-10 μ M).

Cd and Cu treatment induced a marked decrease in R-PC content. R-PC content decreased by 51.0%, 89.9% and 90% in exposure from 50 to 200µM Cd, 23.7%, 29.0% and 50.5% in exposure from 2 to 10µM Cu, respectively, in comparison with the control treatment (Tables.1 and 2). G lemaneiformis when exposed to 100 and 200μM Cd concentration maintained a lower R-PE content. 2 and 5μM Cu had a insignificant affect on R-PE content in G. lemaneiformis, whereas 10μM Cu concentration led to a sharply decline in R-PE content (P<0.05). Ouzounidou (1993) reported that the chlorophyll content decreased at elevated Cd levels. The reduced chlorophyll content in Cd treated samples had been found to be associated with Mg and Fe deficiency in the process of chlorophyll biosynthesis (Greger and Ogren 1991). Cd had also been shown to inhibit the chlorophyll synthesis by affecting the activity of photochlorophyllide reductase (Stobart et al. 1985). Chl a maintained stable in exposure from 2 to 10µM Cu concentration, which may be due to the formation of Cu-substituted chlorophyll (Prasad et al. 2001; Küpper et al. 1996). In this study Cu and Cd treatments had a more apparent effects on R-PC and R-PE than Chl a and Car, which indicated that R-PC and R-PE were more sensitive to Cu or Cd treatment. R-PC and R-PE located in phycobilisomes were the main accessory pigments in the red algae. They transferred light to reaction center of photosystem I and II by overlapping their respective absorption and fluorescence spectra between bilipigments and chlorophyll a at the reaction center (Rodrigo and Robaina 1997). A decrease of R-PC and R-PE content indicated that the phycobilisomes could have been damaged in high Cu and Cd concentration, which resulted in a decrease of light energy absorbed by phycobilisomes. This could also explain the photosynthetic inhibition in high Cu and Cd concentrations.

Our results provided additional evidence that Cu was more toxic to *G. lemaneiformis* than Cd, and R-PE and R-PC were more sensitive to Cu and Cd than Chl a and Car. The phycobilisome damage under high Cu and Cd concentration resulted in a decline of light energy absorbed to inhibit photosynthesis. Further works would be needed to determine how Cu and Cd affected the phycobilisomes.

REFERENCES

Alia, Saradhi PP (1991) Proline accumulation under heavy metal stress. J Plant Physiol 138: 554-558.

Barón M, Arellano B, López GJ (1995) Copper and photosystem II: A controversial relationship. Physiol Plant 94: 174-180.

Brown M, Newman JE (2003) Physiological response of Gracilariopsis

- longissima (S. G. Gmelin) steentoft, L. M. Irvine and Farnham (Rhodophyceae) to sublethal copper concentrations. Aquat Toxicol 64: 201-213.
- De Filippis LF (1979) The effect of heavy metal compounds on the permeability of *Chlorella* cells. Z Pflanzenphysiol 78: 314-322.
- Evans LV (1988) The effects of spectral composition and irradiance level on pigment levels in seaweeds. In: Lobban CS, Chapman DJ, Kremer BP (ed) Experimental Phycology: A Laboratory Manual. Cambridge University Press, Cambridge, p123-129.
- Fei XG (1999) Seaweed cultivation in large scale-possible solution to the problem of europhication by removing nutrient. 2nd Asian Pacific Phycological Forum. Hong Kong
- Gledhill M, Nimmo M, Hill SJ, Brown MT (1997) The toxicity of copper (II) species to marine algae, with particular reference to macroalgae. J Phycol 33: 2-11.
- Greger M, ögren E (1991) Direct and indirect effects of Cd²⁺ on photosynthesis in sugar beet (Beta vulgaris). Physiol Plant 83: 129-135.
- Haritonidis S, Malea P (1995) Seasonal and local variation of Cr, Ni, and Co concentrations in *Ulva rigida* C. Agardh and *Enteromorpha linza* (Linnaeus) from Thermaikos Gulf, Greece. Environ Pollut 89: 319-327.
- Haritonidis S, Malea P (1999) Bioaccumulation of metals by the green alga *Ulva rigida* from Thermaikos Gulf. Greece. Environ Pollut 104: 365-372.
- Ho YB (1990). *Ulva lactuca* as bioindicator of metal contamination in intertidal waters in Hong Kong, Hydrobiologia 203: 73-81.
- Hopkin D, Kain JM (1978) The effects of some pollutants on the survival, growth and respiration of *Laminaria hyperborean*. Est Coastal Mar Sci 7: 531-553.
- Krupa, Z (1988) Cadmium-induced changes in the composition and structure of the light –harvesting complex II in radish cotyledons. Physiol Plant 73: 518-524.
- Küpper H, Küpper F, Spiller M (1996) Environmental relevance of heavy metal-substitute chlorophylls using the example of water plants. J Exp Bot 47: 259-266.
- Lyngby JE, Brix H (1984) The Uptake of heavy of heavy metals in eelgrass *Zostera marina* and their effect on growth. Ecol Bull 36: 81-89.
- Maksymiec W (1997) Effect of copper on cellular processes in higher plants. Photosynthetica 34: 321-342.
- Malea P (1994) Seasonal variation and local distribution of metals in the seagrass *Halophila stipulacea* (Forsk) Aschers in the Antikyra Gulf, Greece. Environ Pollut 85: 77-85.
- Mclachlan J (1973) Growth media-marine. In: Stein JR (ed) Handbooks of Phycological Methods: Culture Methods and Growth Measurements. Cambridge University Press, Cambridge, p25-51.
- Munda I M, Hudnik V (1986) Growth response of *Fucus vesiculosus* to heavy metals, singly and in dual combinations, as related to accumulation. Bot Mar 29: 401-412.
- Ouzounidou G (1993) Change in variable chlorophyll fluorescence as a result of

- Cu-treatment: dose-response relations in *Silene* and *Thlaspi*. Photosynthetica 29: 455-462.
- Pätsikkä E, Aro E-M, Tyystjärvi E (2001) Mechanism of copper-enhanced photoinhibition in thylakoid membranes. Physiol Plant 113: 142-150.
- Prasad MNV, Malec P, Waloszek M, Bojko M, Strzalka K (2001) Physiological responses of *Lemna trisulca* L. (duckweed) to cadmium and copper bioaccumulation. Plant Sci 161: 881-889.
- Ralph PJ, Burchett MD (1998) Photosynthetic response of *Halophila ovalis* to heavy metal stress. Environ Pollut 103: 91-101.
- Rodrigo M, Robaina RR (1997) Stress tolerance of photosynthesis in sporelings of the red alga *Grateloupia doryphora* compared to that of Stage III thalli. Mar Biol 128: 689-694.
- Say PJ, Burrows IG, Whitton BA (1990) *Enteromorpha* as a monitor of heavy metal in estuaries. Hydrobiologia 195: 119-126.
- Saygideger S (2000) Sorption of Cadmium and their effects on growth, protein contents, and photosynthetic pigment composition of *Veronica anagallis-aquatica* L. and *Ranunculus aquatilis* L. Bull. Environ Contam Toxicol 65: 459-464.
- Shioi Y, Tamai H, Sasa T (1978) Inhibition of photosystem II in the green alga *Ankistrodesmus falcatus* by copper. Physiol Pl 44: 434-438.
- Siedlecka A, Baszynsky T (1993) Inhibition of electron flow around photosystem I in chloroplasts of cadmium-treated maize plants is due to cadmium-induced iron deficiency. Physiol Plant 87: 199-202.
- Siedlecka A, Krupa Z (1996) Interaction between cadmium and iron and its effects on photosynthetic capacity of primary leaves of *Phaseolus vulgaris*. Plant Physiol Biochem 35: 951-957.
- Stobart AK, Griffiths WT, Ameen-Bukhari I, Sherwood RP (1985) The effects of Cd²⁺ on the biosynthesis of chlorophyll in leaves of barley. Physiol Plant 63: 293-298.
- Van Assche F, Clijsters H (1990) Effects of metal on enzyme activity in plants. Plant Cell Environ 13: 195-206.
- Villares R, Puente X, Carballeira A (2001) *Ulva* and *Enteromorpha* as indicators of heavy metal pollution. Hydrobiologia 462: 221-232.
- Volesky B, Holan ZH (1995) Biosorption of heavy metals. Biotechnol Prog 11: 235-250.
- Yruela I, Alfonso M, Barón M, Picorel R (2000) Copper effect on the protein composition of photosystem II. Physiol Plant 110: 551-557.